Standard Simulation Variable Names AIAA Modeling and Simulation Technical Committee ## October 2007 This table is meant to contain simulation variables that are independent of the particular vehicle type being simulated. These variables are tailored towards aircraft simulation. Visit http://DaveML.nasa.gov to suggest additional variables or changes to the exisiting list Interpretation of the standard variable name table is best given by example. In general the table has 7 columns. These are described below using the rollEulerAngle as an example: is standard variable defining the Roll Euler Angle, its axis system and positive sign convention (+ = RWD, or right wing down). Four name examples are provided: 1) The symbol for that variable Φ 2) The short name - PHI - 3) One of more full names using the standard units conventions. **Generally**, one full name with American convention units and one with SI units. Any suitable units may be used. In the example for rollEulerAnge both the _d for degrees and the _r for radians is given. The "Full Variable Name" column does not necessarily provide all acceptable units for each variable. - 4) A description of the variable, if applicable should always specify the axis system. - 5) The POSITIVE sign convention of the variable RWD indicates that plus rollEulerAngle is right wing down - 6) Minimum value, normally only specified for angles - 7) Maximum values of the variable, normally only specified for angles This example also illustrates the pitch and yaw Euler angles. Some variables may be used to represent variables referenced to more than one axis system. In this case the axis system is specified as xx and any axis system reference (refer to the body of this standard) may be substituded for the xx. For example, NxxVelocity_fs_1 may represent; NEIVelocity_fs_1 for the EI axis sytem- Earth centered Inertial (also know as geocentric inertial) axis sytem NEFVelocity_fs_1 for the EF axis system- Earth centered earth Fixed (also known as Geocentric Earth [GE] axis system) NVOVelocity fs 1 for the VO axis sytem- Vehicle carried, Orbit defined axis system etc. Since roll, pitch and yaw may also conveniently be expressed as a vector, the shaded area is the standard definition of the Euler angle vector. Again, eulerAngle_r(3) would be the standard vector using radians as the units and is fully compliant with the standard. | Symbol | Short Name | Full Variable Name | Description | Sign Convention | Min Value | Max Value | | | | | |----------|------------|--------------------|---|-----------------|-----------|-----------|--|--|--|--| | <u>E</u> | EUL(3) | eulerAngle_d(3) | Vector of the roll, pitch, and yaw Euler angles comprised of the elements defined | | | | | | | | | | | eulerAngle_r(3) | below. LL (locally level) frame. | | | | | | | | | Φ | РНІ | rollEulerAngle_d | Roll Euler Angle, LL frame. | RWD | -180,-π | 180, π | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign Convention | Min Value | Max Value | |--------|------------|-------------------------------------|-----------------------------|-----------------|-----------|-----------| | | | rollEulerAngle_r | | | | | | θ | THET | pitchEulerAngle_d pitchEulerAngle_r | Pitch Euler Angle, LL frame | ANU | -90, -π/2 | 90, π/2 | | ψ | PSI | yawEulerAngle_d yawEulerAngle r | Yaw Euler Angle, LL frame | ANR | -180,-π | 180, π | The vaiable name table below does not specify which variables are states, state derivatives, inputs or initial conditions. These specifications may be added to any appropriate variable. See the body of this standard. | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |---------------|------------|------------------------------|--------------------------------|-----------------|---------------|----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | Vehicle Positions and Angles | | | | | | | | | <u>E</u> | EUL | eulerAngle_d(3) | Vector of the roll, pitch, and | l yaw Euler ang | gles defined | d below. | | | | | | | eulerAngle_r(3) | LL (locally level) frame. | | | | | | | | ϕ | PHI | rollEulerAngle_d | Roll Euler Angle, LL | RWD | From | -180 | 180 | 2 | | | | | rollEulerAngle_r | frame. | | vehicle | | | | | | | | | | | trim | | | | | | θ | тнет | pitchEulerAngle_d | Pitch Euler Angle, LL | ANU | From | -90 | 90 | 2 | | | | | pitchEulerAngle_r | frame | | vehicle | | | | | | | | | | | trim | | | | | | Ψ | PSI | yawEulerAngle_d | Yaw Euler Angle, LL | ANR | From | -180 | 180 | 2 | | | | | yawEulerAngle_r | frame | | vehicle | | | | | | | | | | | trim | | | | | | $\sin \phi$ | SPHI | rollEulerAngleSine | Sine Of Euler Roll Angle | RWD | | -1.0 | 1.0 | | | | $\cos \phi$ | СРНІ | rollEulerAngleCosine | Cosine Of Euler Roll | RWD | | -1.0 | 1.0 | | | | | | | Angle | | | | | | | | $\sin \theta$ | STHT | pitchEulerAngleSine | Sine Of Euler Pitch Angle | ANU | | -1.0 | 1.0 | | | | $\cos \theta$ | СТНТ | pitchEulerAngleCosine | Cosine Of Euler Pitch | ANU | | -1.0 | 1.0 | | | | | | | Angle | | | | | | | | sin ψ | SPSI | yawEulerAngleSine | Sine Of Euler Yaw Angle | ANR | | -1.0 | 1.0 | | | | cosψ | CPSI | yawEulerAngleCosine | Cosine Of Euler Yaw | ANR | | -1.0 | 1.0 | | | | , | C1 51 | yawLuciAngicCosme | | AINIX | | -1.0 | 1.0 | | | | $T_{FE/B}$ | T. (EDDTO) | PET D. L.T. A. | Angle | | 1.0 | | | | | | =FE/B | T (FEBT?) | FEToBodyT(3,3) | The FE to Body transformat | ion matrix con | iposed of the | ne | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |------------------------|------------|--------------------|--------------------------|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | | elements defined below | | | | ı | | | | T _{FE/B} (1,1 | T11 | FEToBodyT11 | CTHT*CPSI (FE To B) | | | | | | | |) | | | axis transformation | | | | | | | | | | | element | | | | | | | | T _{FE/B} (2,1 | T21 | FEToBodyT21 | SPHI*STHT*CPSI - | | | | | | | |) | | | CPHI*SPSI (FE To B) | | | | | | | | | | | axis transformation | | | | | | | | | | | element | | | | | | | | T _{FE/B} (3,1 | T31 | FEToBodyT31 | CPHI*STHT*CPSI+ | | | | | | | |) | | | SPHI*SPSI (FE to B) axis | | | | | | | | | | | transformation element | | | | | | | | T _{FE/B} (1,2 | T12 | FEToBodyT12 | CTHT*SPSI (FE to B) | | | | | | | |) | | | axis transformation | | | | | | | | | | | element | | | | | | | | T _{FE/B} (2,2 | T22 | FEToBodyT22 | SPHI*STHT*SPSI + | | | | | | | |) | | | CPHI*CPSI (FE to B) axis | | | | | | | | | | | transformation element | | | | | | | | T _{FE/B} (3,2 | Т32 | FEToBodyT32 | CPHI*STHT*SPSI - | | | | | | | |) | | | SPHI*CPSI (FE to B) axis | | | | | | | | | | | transformation element | | | | | | | | T _{FE/B} (1,3 | T13 | FEToBodyT13 | -STHT (FE to B) axis | | | | | | | | | | | transformation element | | | | | | | | T _{FE/B} (2,3 | T23 | FEToBodyT23 | SPHI*CTHT (FE to B) | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |------------------------|------------|---------------------|--|--------------------|-----------------|--------------|-----------|------|-----------------| |) | | | axis transformation | | | | | | | | | | | element | | | | | | | | T _{FE/B} (3,3 | Т33 | FEToBodyT33 | CPHI*CTHT (FE to B) | | | | | | | |) | | | axis transformation | | | | | | | | $\gamma_{_{ m V}}$ | CANGU | O' LOD d A . L | | ANU | | /2 | /2 | 2 | | | 'v | GAMV | flightPathAngle_r | Flight Path Angle Above | ANU | | -π/2 | π/2 | 3 | | | | | flightPathAngle_d | Horizon | | | -90 | 90 | | | | $\gamma_{_{ m H}}$ | GAMH | flightPathAzimuth_r | Flight Path Angle In | CWFN | | -π | π | 3 | | | | | flightPathAzimuth_d | Horizon Plane, from North | | | -180 | 180 | | | | | | | | | | | | | | | h | ALT | altitudeMSL_f | Altitude Of Aircraft | UP | | | | | | | | | altitudeMSL_m | Above Sea Lvl | | | | | | | | | | | FE (flat earth or local) | | | | | | | | | | | frame | | | | | | | | | XLON | xxLongitude_r | Longitude Of Aircraft | WEST | | | | | | | | | xxLongitude_d | in <mark>xx</mark> frame. | | | | | | | | | XLAT | xxLatitude_r | Latitude Of Aircraft | NORTH | | | | | | | | | xxLatitude_d | in xx frame. | | | | | | | | | SLAT | xxSineLatitude | Sine Of Aircraft Latitude in xx frame. | NORTH | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |--------|------------|---------------------------------|--------------------------------|--------------------|-----------------|--------------|-----------|------|-----------------| | | CLAT | xxCosineLatitude | Cosine Of Aircraft | NORTH | | | | | | | | | | Latitude
in xx frame. | | | | | | | | | HGT_RWY | runwayHeightAboveSL_ft | Height Of Runway W/r/t | Above | | | | | | | | | runwayHeightAboveSL_m | mean Sea Level | | | | | | | | | | xxCGPosition_ft (3) | Vector of positions of the C | G with respect | to a user d | efined | | | | | | | xxCGPosition_m (3) | reference point in the specif | iced axis syster | n. Compri | sed of the | | | | | | | | three components as defined | d below. | | | | | | | | XCG | X <mark>xx</mark> CGPosition_ft | X Position of the CG W/r/t | CG | | | | | | | | | XxxCGPosition_m | the user defined reference | Northwar | | | | | | | | | | point in the xx axis system | d of the | | | | | | | | | | | reference | | | | | | | | | | | point | | | | | | | | YCG | Y <mark>xx</mark> CGPosition_ft | Y Position of the CG W/r/t | CG East | | | | | | | | | YxxCGPosition_m | the user defined reference | of the | | | | | | | | | | point in the xx axis system | reference | | | | | | | | | | |
point | | | | | | | | ZCG | ZxxCGPosition_ft | Z Position of the CG W/r/t | CG below | | | | | | | | | Z _{XX} CGPosition_m | the user defined reference | the | | | | | | | | | | point in the xx axis system | reference | | | | | | | | | _ | | point | | | | | | | | | xxReferencePosition_ft (3) | Vector of positions of the m | oment reference | e center w | ith | | | | | | | xxReferencePosition_m (3) | respect to a user defined refe | erence point in | the specifi | ced axis | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |--------|------------|--|-----------------------------|------------------|--------------|-----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | | system. This is sometimes n | nore convenier | nt to locate | a vehicle | | | | | | | | since the moment reference | center is fixed | in the vehi | cle, but | | | | | | | | the CG moves. Comprised of | of the three cor | nponents a | s defined | | | | | | | | below. | | | | | | | | | XREF | X <mark>xx</mark> ReferencePosition_ft | X Position of the moment | moment | | | | | | | | | XxxReferencePosition_m | reference center W/r/t the | reference | | | | | | | | | | user defined reference | center | | | | | | | | | | point in the xx axis system | Northwar | | | | | | | | | | | d of the | | | | | | | | | | | reference | | | | | | | | | | | point | | | | | | | | YREF | YxxReferencePosition_ft | Y Position of the moment | moment | | | | | | | | | YxxReferencePosition_m | reference center W/r/t the | reference | | | | | | | | | | user defined reference | center | | | | | | | | | | point in the xx axis system | East of the | | | | | | | | | | | reference | | | | | | | | | | | point | | | | | | | | ZREF | ZxxReferencePosition_ft | Z Position of the moment | moment | | | | | | | | | ZxxReferencePosition_m | reference center W/r/t the | reference | | | | | , | | | | | user defined reference | center | | | | | | | | | | point in the xx axis system | below the | | | | | | | | | | | reference | | | | | | | | | | | point | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | | |--------|-----------------|---|--------------------------------|------------------|--------------|-----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | pilotEyePosition_ft (3) | Vector of positions of the pi | lots eye with re | espect to th | e CG in | | | | | | | pilotEyePosition_m (3) | the body axis system. Comp | orised of the th | ree compoi | nents as | | | | | | | | defined below. | | | | | | | | | XPLT2CG | pilotEyeXPosition_ft | X Position Of Pilot eye | Eye FWD | | | | | | | | | pilotEyeXPosition_m | point W/r/t C.g., in the | of CG | | | | | | | | | | body axis system | | | | | | | | | YPLT2CG | pilotEyeYPosition_ft | Y Position Of Pilot eye | Eye Right | | | | | | | | | pilotEyeYPosition_m | point W/r/t C.g., in the | of the CG | | | | | | | | | | body axis system | | | | | | | | | ZPLT2CG | pilotEyeZPosition_ft | Z Position Of Pilot eye | Eye below | | | | | | | | | pilotEyeZPosition_m | point W/r/t C.g., in the | CG | | | | | | | | | | body axis system | | | | | | | | | Example | Runway22Position_ft (3) | Vector of positions of the air | rcraft CG relati | ive to the R | Runway | | | | | | <i>Enum</i> pro | Runway22Position _m (3) | 22 (a user defined) touchdox | | | - | | | | | | | Nullway221 Osition _iii (3) | | | ли. Сощ | orisca or | | | | | | V/GGTD | What are the control of | the three components as defi | | | | | | | | | XCGTD | XRunway22Position_ft | C.g. X-position W/r/t | CG Down | | | | | | | | | XRunway22Position t_m | Runway touchdown point | the | | | | | | | | | | in the specified | runway | | | | | | | | | | (Runway22) axis system. | from the | | | | | | | | | | | reference | | | | | | | | | | | point | | | | | | | | YCGTD | YRunway22Position_ft | C.g. Y-position W/r/t | CG to the | | | | | | | | | YRunway22Position t_m | Runway touchdown point | right of | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |--------|------------|------------------------|-------------------------------|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | | in the specified | the | | | | | | | | | | (Runway22) axis system. | reference | | | | | | | | | | | point | | | | | | | | ZCGTD | ZRunway22Position _ft | C.g. Z-position W/r/t | CG below | | | | | | | | | ZRunway22Position _m | Runway touchdown point | the TD | | | | | | | | | | in the specified | point | | | | | | | | | | (Runway22) axis system. | | | | | | | | | | | (this variable is normally | | | | | | | | | | | negative) | | | | | | | | | RE | smoothEarthRadius_f | Radius of Earth (center to | | | | | | | | | | smoothEarthRadius_m | smooth surface which is | | | | | | | | | | | mean sea level), round | | | | | | | | | | | earth model or oblate | | | | | | | | | | | spheroid under the | | | | | | | | | | | aircraft. | | | | | | | | | RALT | altitudeAboveTerrain_f | height of the aircraft cg | NSG | | | | | | | | | altitudeAboveTerrain_m | above the terrain | | | | | | | | | HTERRAIN | heightOfTerrain_f | Height of the terrain under | | | | | | | | | | heightOfTerrain_m | the a/c cg. It is the terrain | | | | | | | | | | | height above the smooth | | | | | | | | | | | surface of of the earth, | | | | | | | | | | | regardless whether a flat, | | | | | | | | | | | round or oblate spheroid | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |---|------------|-------------------------------|------------------------------|--------------------|-----------------|--------------|-----------|------|-----------------| | | | | model is used. | | | | | | | | | | Vehicle Velocities and | | | | | | | | | | | Angular Rates | | | | | | | | | $\underline{\underline{\omega}_{\scriptscriptstyle B}}$ | OMB | bodyAngularRate_rs_1(3) | Vector of body axis angular | rates comprise | d of the thr | ree | | | | | | | bodyAngularRate_ds_1(3) | components as defined below. | | | | | | | | p_{B} | РВ | rollBodyRate_rs_1 | Aircraft Roll Velocity, | RWD | | | | 3 | | | | | rollBodyRate_ds_1 | Body Frame | | | | | | | | | | | | | | | | | | | q_B | QB | pitchBodyRate_rs_1 | Aircraft Pitch Velocity, | ANU | | | | 3 | | | | | pitchBodyRate_ds_1 | Body frame | | | | | | | | r_{B} | RB | yawBodyRate_rs_1 | Aircraft Yaw Velocity, | ANR | | | | 3 | | | | | yawBodyRate_ds_1 | Body frame | | | | | | | | | | bodyAngularRateNoTurb_rs_1(3) | Vector of aircraft angular | | | | | | | | | | bodyAngularRateNoTurb_ds_1(3) | rates with respect to the | | | | | | | | | | | angular turbulence | | | | | | | | | | | velocities. Comprised of | | | | | | | | | | | the three components as | | | | | | | | | | | defined below. Body | | | | | | | | | | | frame. | | | | | | | | | PBWN | rollBodyRateNoTurb_rs_1 | Roll rate wrt roll | RT wing | | | | | | | | | rollBodyRateNoTurb_ds_1 | turbulence | down | | | | | | | | | | | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | | |--|------------|--------------------------|--------------------------------|-----------------|--------------|----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | QBWN | pitchBodyRateNoTurb_rs_1 | Pitch rate wrt pitch | Nose UP | | | | | | | | | pitchBodyRateNoTurb_ds_1 | turbulence | | | | | | | | | RBWN | yawBodyRateNoTurb_rs_1 | Yaw rate wrt yaw | Nose RT | | | | | | | | |
yawBodyRateNoTurb_ds_1 | turbulence | | | | | | | | $\dot{\underline{\mathcal{E}}}$ | EULD | eulerAngleRate_ds_1(3) | Vector of the roll, pitch, and | l yaw Euler ang | gle rates de | fined | | | | | | | eulerAngleRate_rs_1(3) | below. LL (locally level) fr | ame | | | | | | | $\dot{\phi}$ | PHID | rollEulerAngleRate_rs_1 | Euler roll rate, LL frame | RWD | From | | | | | | | | | | | vehicle | | | | | | | | | | | trim | | | | | | $\dot{ heta}$ | THETD | pitchEulerAngleRate_rs_1 | Euler pitch rate, LL frame | ANU | From | | | | | | | | | | | vehicle | | | | | | | | | | | trim | | | | | | ψ | PSID | yawEulerAngleRate_rs_1 | Euler yaw rate, LL frame | ANR | From | | | | | | , | 1310 | yawEulerAngieRate_15_1 | Euler yaw rate, EE frame | ANK | vehicle | | | | | | | | | | | | | | | | | $\underline{V}_{\scriptscriptstyle B}$ | | | | | trim | | | | | | <u>v</u> _B | VELB | bodyVelocity_fs_1(3) | Vector of body axis translat | | comprised | l of the | | | | | | | bodyVelocity_ms_1(3) | three components as defined | d below. | | | | | | | u_{B} | UB | UbodyVelocity_fs_1 | X-velocity Body frame. | FWD | | | | 3 | | | | | UbodyVelocity_ms_1 | v_{B} | VB | VbodyVelocity_fs_1 | Y-velocity Body frame | RT | | | | 3 | | | | | VbodyVelocity_ms_1 | | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | | |---------------------------|---------------------|---------------------------------------|--------------------------------|-------------------|--------------|-----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | W _B | WB | WbodyVelocity_fs_1 WbodyVelocity_ms_1 | Z-velocity Body frame | DWN | | | | 3 | | | | | | | | | | | | | | \underline{V}_{FE} | VELFE | FEVelocity_fs_1(3) | Vector of Flat Earth (FE) ax | is translational | velocities | | | | | | | | FEVelocity_ms_1(3) | comprised of the three comp | onents as defin | ned below. | I | I | | | | V _N | VNFE | NfeVelocity_fs_1 | Northward Velocity Over | NORTH | | | | | | | | | NfeVelocity_ms_1 | Flat Earth (FE) axis | | | | | | | | | | | system [flat, non-rotating | | | | | | | | | | | earth] | | | | | | | | \mathbf{v}_{E} | VEFE | EfeVelocity_fs_1 | Eastward Velocity Over | EAST | | | | | | | | | EfeVelocity_ms_1 | Flat Earth (FE) axis | | | | | | | | | | | system [flat, non-rotating | | | | | | | | | | | earth] | | | | | | | | V_{D} | VDFE | DfeVelocity_fs_1 | Downward Velocity | DOWN | | | | | | | | | DfeVelocity_ms_1 | Toward Earth Ctr,.(FE) | | | | | | | | | | | axis system [flat, non- | | | | | | | | | | | rotating earth] | | | | | | | | \underline{V}_{GE} | VEL <mark>xx</mark> | xxVelocity_fs_1(3) | Vector of aircraft cg translat | tional velocities | s wrt the sp | ecified | | | | | | | xxVelocity_ms_1(3) | (xx) axis system comprised | of the three cor | nponents a | s defined | | | | | | | | below. | | | | | | | | V _N | VNxx | NxxVelocity_fs_1 | Northward Velocity Over | NORTH | | | | | | | | | NxxVelocity_ms_1 | specified (xx)Earth Fixed | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |----------------|--------------------|-----------------------------------|---|--------------------|-----------------|--------------|-----------|------|-----------------| | | | | Axis System | Joz. Cheron | , mine | · aruc | | | Jamaged | | V _E | VE <mark>xx</mark> | ExxVelocity_fs_1 ExxVelocity_ms_1 | Eastward Velocity Over specified (xx)Earth Fixed Axis System | EAST | | | | | | | V _D | VD <mark>xx</mark> | DxxVelocity_fs_1 DxxVelocity_ms_1 | Downward Velocity Over specified (xx)Earth Fixed Axis System | DOWN | | | | | | | | Examples | EGEVelocity_fs_1 | Eastward (Y axis) velocity over the earth in the geocentric earth (GE) axis system in ft/sec | East | | | | | | | | | NEFVelocity_kms_1 | Northward (X axis) velocity over the earth in the earth centered earth fixed (EF) axis system in kilometers/sec | North | | | | | | | | | UBodyVelocity_fs_1 | X axis velocity in the Body axis system in ft/sec | Forward | | | | | | | | | ZRunway22Velocity_fs_1 | Z axis velocity in the user
defined "runway22"
coordinate system in f/s | Down | | | | | | | $V_{T_{XX}}$ | VTxx | xxTotalVelocity_fs_1 | Total Velocity where xx is | forward | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |---|-----------------------|----------------------------------|-------------------------------|------------------|--------------|-----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | xxTotalVelocity_ms_1 | the reference frame as | | | | | | | | | | | defined in the body of this | | | | | | | | | | | standard. | | | | | | | | $V_{G_{XX}}$ | VG <mark>xx</mark> | xxGroundSpeed_fs_1 | Vehicle velocity relative | forward | | | | | | | | | xxGroundSpeed_ms_1 | to the ground, where xx is | | | | | | | | | | | the reference frame as | | | | | | | | | | | defined in the body of this | | | | | | | | | | | standard. | | | | | | | | $M_{\rm N}$ | XMACH | mach | Mach Number of the | forward | | | | | | | | | | aircraft | | | | | | | | $V_{\scriptscriptstyle RW_{\scriptscriptstyle XX}}$ | VELRW <mark>xx</mark> | xxVelocityRelativeToWind_fs_1(3) | Vector of fixed xx axis trans | slational veloci | ties wrt the | specified | | | | | | | xxVelocityRelativeToWind_ms_1(3) | (xx) axis system comprised of | of the three cor | nponents a | s defined | | | | | | _ | | below. | | | | | | | | V _{NRW} | VNRWxx | xxVelocityXRelativeToWind_fs_1 | North Relative Velocity | NORTH | | | | | | | | | xxVelocityXRelativeToWind_ms_1 | Vn-vnw in the xx frame. | | | | | | | | V _{ERW} | VERWxx | xxVelocitxxRelativeToWind_fs_1 | East Relative Velocity Ve- | EAST | | | | | | | | | xxVelocitxxRelativeToWind_ms_1 | vew in the xx frame. | | | | | | | | V _{DRW} | VDRWxx | xxVelocityZRelativeToWind_fs_1 | Down Relative Velocity | DOWN | | | | | | | | | xxVelocityZRelativeToWind_ms_1 | Vd-vdw in the xx frame. | | | | | | | | $\dot{h}_{\scriptscriptstyle XX}$ | ALTDxx | xxAltitudeRate_fs_1 | Altitude time rate of | DOWN | | | | | | | | | xxAltitudeRate_ms_1 | change in xx frame. | | | | | | | | | XLOND | xxLongitudeRate_rs_1 | Longitude Rate Of | WEST | | | | | | | | | xxLongitudeRate_ds_1 | Change in xxfrane. | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |---|------------|---|---|--------------------|-----------------|--------------|-----------|------|-----------------| | | XLATD | xxlatitudeRate_rs_1 xxlatitudeRate_ds_1 | Latitude Rate Of Change in xx frame. | NORTH | | | | | | | ps | PS | rollVFRate_rs_1 rollVFRate_ds_1 | Roll about the X axis in the VF reference frame, also know as stability axis roll rate. | RWD | | | | | | | r _s | RS | yawVFRate_rs_1 yawVFRate_ds_1 | Yaw about the Z axis in the VF reference frame, also known as the Stability Axis yaw rate | ANR | | | | | | | | | Vehicle Linear and Angular Accelerations | | | | | | | | | $\dot{\underline{\omega}}_{\scriptscriptstyle B}$ | OMBD | bodyAngularAccel_rs_2(3) bodyAngularAccel_ds_2(3) | Vector of body axis angular three components as defined | | comprised (| of the | | | | | $\dot{p}_{\scriptscriptstyle B}$ | PBD | rollBodyAccel_rs_2 rollBodyAccel_ds_2 | Aircraft Roll Acceleration, Body frame | RWD | | | | | | | $\dot{q}_{\scriptscriptstyle B}$ | QBD | pitchBodyAccel_rs_2 pitchBodyAccel_ds_2 | Aircraft Pitch Accel, Body frame | ANU | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |------------------------------------|---------------------|--------------------|--------------------------------|--------------------|-----------------|--------------|-----------|------|-----------------| | $\dot{r}_{\!\scriptscriptstyle B}$ | RBD | yawBodyAccel_rs_2 | Aircraft Yaw | ANR | | | | | | | | | yawBodyAccel_ds_2 | Acceleration, Body frame | | | | | | | | | | bodyAccel_fs_2(3) | Vector of accelerations of the | ne cg of the a/c | wrt the inte | erital | | | | | | | bodyAccel_ms_2(3) | frame in the body axis syste | m. Therefore | does not in | clude the | | | | | | | | gravity vector. Comprised of | of the three con | nponents as | s defined | | | | | | ı | | below. | | | | | | | | $u_{\rm B}$ | UBD or UBD | UbodyAccel_fs_2 | Lonngitudinal acceleration | FWD | | | | | | | | | UbodyAccel_ms_2 | (along the X-body axis) | | | | | | | | v_{B} | VBD or VBD | VBodyaccel_fs_2 | Right Sideward | RT | | | | | | | | | VBodyaccel_ms_2 | Acceleration, Body axis | | | | | | | | WB | WBD or WBD | WBodyaccel_fs_2 | Downward Acceleration, | DOWN | | | | | | | | | WBodyaccel_ms_2 | Body axis | | | | | | | | $\dot{V}_{T_{XX}}$ | VTD <mark>xx</mark> | xxTotalAccel_fs_2 | Rate of change of inertial | forward | | | | | | | | | xxTotalAccel_ms_2 | velocity, where xx is the | | | | | | | | | | | reference frame as defined | | | | | | | | | | | in the body of this | | | | | | | | | | | standard. | | | | | | | | | | xxAccel_fs_2 | Vector of aircraft cg translat | tional wrt the s | pecified (x | x) axis | | | | | | | xxAccel_ms_2 | system comprised of the three | ee components | as defined | below. | | | | | V _N | VND | NxxAccel_fs_2 | North Acceleration Over | NORTH | | | | | | | Symbol | Short Name | Full Variable Name |
Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |----------------|------------|-------------------------------|-------------------------------|--------------------|-----------------|--------------|-----------|------|-----------------| | | | NxxAccel_ms_2 | Earth | | | | | | | | V _E | VED | ExxAccel_fs_2 | East Acceleration Over | EAST | | | | | | | | | E <mark>xx</mark> Accel_ms_2 | Earth | | | | | | | | V_{D} | VDD | D <mark>xx</mark> ZAccel_fs_2 | Down Acceleration | DOWN | | | | | | | | | D <mark>xx</mark> Accel_ms_2 | Toward Earth surface or | | | | | | | | | | | center | | | | | | | | | | bodyCgAccelSensed_fs_2(3) | Vector of accelerations sen | sed at the cg (in | ncluding th | e effects | | | | | | | bodyCgAccelSensed_ms_2(3) | of the gravity vector) in the | body axis syste | em. Comp | rised of | | | | | | | | the three components as de | fined below. | | | | | | | | ı | _ | | | | | | | | | | AX | XBodyCgAccelSensed_fs_2 | X Acceleration Of A/c | FWD | | | | | | | | | XBodyCgAccelSensed_ms_2 | C.g. (body axis) | | | | | | | | | | | Includes the gravity | | | | | | | | | | | vector. | | | | | | | | | AY | YBodyCgAccelSensed_fs_2 | Y Acceleration Of A/c | RT | | | | | | | | | YBodyCgAccelSensed_ms_2 | C.g. (body axis) | | | | | | | | | | | Includes the gravity | | | | | | | | | | | vector. | | | | | | | | | AZ | ZBodyCgAccelSensed_fs_2 | Z Acceleration Of A/c | DOWN | | | | | | | | | ZBodyCgAccelSensed_ms_2 | C.g. (body axis) | | | | | | | | | | | Includes the gravity | | | | | | | | | | | vector. | | | | | | | | | | bodyPilotAccel_fs_2(3) | Vector of accelerations at | the pilot referen | ce point, ir | the body | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |----------------|------------|--------------------------|------------------------------|---------------|-------------|--------------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | bodyPilotAccel_ms_2 (3) | axis system, comprised of th | e three compo | nents as de | fined | | | | | | | | below. | | | | ı | | | | | AXP | XBodyPilotAccel_fs_2 | X Acceleration Of Pilot | FWD | | | | | | | | | XBodyPilotAccel_ms_2 | reference point (body axis) | | | | | | | | | AYP | YBodyPilotAccel_fs_2 | Y Acceleration Of Pilot | RT | | | | | | | | | YBodyPilotAccel_ms_2 | reference point(body axis) | | | | | | | | | AZP | ZBodyPilotAccel_fs_2 | Z Acceleration Of Pilot | DOWN | | | | | | | | | ZBodyPilotAccel_ms_2 | reference point(body axis) | | | | | | | | | G | localGravity_fs_2 | Acceleration Due To | DOWN | | | | | | | | | localGravity_fs_2 | Gravity (at the vehicle | | | | | | | | | | | altitude) | | | | | | | | | | Vehicle Air Data | | | | | | | | | α | ALFA | angleOfAttack_d | Angle Of Attack, Body | ANU | From | <i>-π</i> ,- | +π ,+180 | | | | | | angleOfAttack_r | axis | | aircraft | 180 | | | | | | | | | | trim | | | | | | β | BETA | angleOfSideslip_d | Sideslip Angle, Body axis | ANL | From | <i>-π</i> ,- | +π ,+180 | | | | | | angleOfSideslip_r | | | aircraft | 180 | | | | | | | | | | trim | | | | | | $\dot{\alpha}$ | ALFD | angleOfAttackRate_rs_1 | Angle Of Attack Rate, | ANU | From | | | | | | | | | Body axis | | aircraft | | | | | | | | | | | trim | | | | | | \dot{eta} | BETD | angleOfSideslipRate_rs_1 | Sideslip Angle Rate | ANL | From | | | | | | | | | | | aircraft | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |------------------|------------|---|---|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | | | | trim | | | | | | $\sin \alpha$ | SALPH | sineAngleOfAttack | Sine Of Angle Of Attack | ANU | | -1.0 | 1.0 | | | | $\cos \alpha$ | CALPH | cosineAngleOfAttack | Cosine Of Angle Of | ANU | | -1.0 | 1.0 | | | | $\sin \beta$ | SBETA | sineAngleOfSideslip | Attack Sine Of Sideslip Angle | ANL | | -1.0 | 1.0 | | | | $\cos \beta$ | СВЕТА | cosineAngleOfSideslip | Cosine Of Sideslip Angle | ANL | | -1.0 | 1.0 | | | | V _{CAL} | VCAL | calibratedAirspeed_nmih_1 | Calibrated Air Speed, | FWD | | | | | | | $V_{\rm EQ}$ | VEQ | equivalentAirspeed_nmih_1 | Equivalent Air Speed | FWD | | | | | | | V _{IND} | VCAL | indicatedAirspeed_nmih_1 | Calibrated Air Speed, | FWD | | | | | | | V _{RW} | VRW | trueAirspeed_fs_1 trueAirspeed_ms_1 trueAirspeed_nmih_1 | Vehicle Velocity relative to the local wind (true airspeed) | FWD | | | | | | | \overline{q} | QBAR | dynamicPressure_lbff_2 dynamicPressure_Nm_2 | Dynamic Pressure | NSC | | | | | | | \overline{q} . | QBARC | impactPressure_lbff_2 impactPressure_Nm_2 | Inpact Pressure | NSC | | | | | | | ρ | RHO | airDensity_lbmf_3 airDensity_kgpm_3 | Air Density, At Altitude of the aircraft | NSC | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |------------------|------------|---------------------------|----------------------------|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | DENALT | densityAltitude_f | Density altitude | | | | | | | | | | densityAltitude_f | | | | | | | | | a | SOUND | speedOfSound_fs_2 | Velocity Of Sound At | NSC | | | | | | | | | speedOfSound_ms_2 | Altitude of the aircraft | | | | | | | | $T_{TOT_{R}}$ | TR | totalTempRatio_C | Total Temperature Ratio | NSC | | | | | | | | | totalTempRatio_K | | | | | | | | | P_{TOT_R} | PR | totalPressureRatio_C | Total Pressure Ratio | NSC | | | | | | | | | totalPressureRatio_K | | | | | | | | | T _{AMB} | TAMB | ambientTemperature_C | Ambient Temperature at | NSC | | | | | | | | | ambientTemperature_K | altitude | | | | | | | | P _{AMB} | PAMB | ambientPressure_lbff_2 | Ambient Pressure at | NSC | | | | | | | | | ambientPressure_Nm_2 | altitude | | | | | | | | P_{AMB}_{R} | PAMBR | ambientPressureRatio | Ratio Of ambient pressure | NSC | | | | | | | | | | at altitude to sea level | | | | | | | | | | | ambient pressure | | | | | | | | T_{AMB}_R | TAMBR | ambientTemperatureRatio | Ratio Of ambient | NSC | | | | | | | | | | temperature at altitude to | | | | | | | | | | | sea level ambient temp. | | | | | | | | T _{TOT} | ттот | totalTemp_C | Total Temperature at | NSC | | | | | | | | | totalTemp_K | altitude | | | | | | | | P _{TOT} | PTOT | totalPressure_lbff_2 | Total Pressure at altitude | NSC | | | | | | | | | totalPressure_Nm_2 | | | | | | | | | | TAMB_R | ambientTemperatureAtAlt_K | Ambient temperature, at | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | | |--------|----------------|---|-----------------------------|------------|--------|-------|-----------|------|---------| | | | li di | 4 10 1 64 66 | Convention | Value | Value | | | Changed | | | | ambientTemperatureAtAlt_R | the altitude of the CG | | | | | | | | | | ambientTemperatureAtAlt_C | | | | | | | | | | TTOT_R | totalTemperatureAtAlt_K | Total temperature at the | | | | | | | | | | totalTemperatureAtAlt_R | altitude of the CG | | | | | | | | | | totalTemperatureAtAlt_C | | | | | | | | | | ALT_SET | InstrumentAltimeterSetting_inchMercury | Cockpit Altimeter setting | 29.92 is | | | | | | | | | | (Kohlsman window) | standard | | | | | | | | | | | day | | | | | | | | P_ALT | PressureAltitude_f | Pressure altitude at the CG | | | | | | | | | | PressureAltitude_m | | | | | | | | | | RHO_SL | seaLevelAirDensity_lbfpf3 | Air density at sea level | | | | | | | | | TAMB_SL | seaLevelAmbientTemp_K | Ambient temperature at | | | | | | | | | | seaLevelAmbientTemp_R | mean sea level | | | | | | | | | | seaLevelAmbientTemp_C | | | | | | | | | | PAMB_SL | seaLevelAmbientPressure_lbff2 | Ambient pressure at sea | | | | | | | | | | seaLevelAmbientPressure_Nm2 | level | | | | | | | | | | Atmospheric Disturbances | | | | | | | | | | | and Turbulence | | | | | | | | | | WIND_SPEED | steadyStateWindVelocity_fs_1 | Total velocity of steady | | | | | | | | | | steadyStateWindVelocity_ms_1 | wind | | | | | | | | | WIND_DIRECTION | steadyStateWindDirection_d | Steady wind heading | Wind | | | | | | | | | | (blowing FROM true | blowing | | | | | | | | | | North) | from | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Date
Changed | |----------------------------|---------------------|--------------------------------|-------------------------------|--------------------|-----------------|--------------|-----------|-----------------| | $\underline{V}_{B_{Turb}}$ | VELBT | bodyTurbulenceVelocity_fs_1(3) | Vector of body axis translati | | | | | | | | | bodyTurbulenceVelocity_ms_1(3) | comprised of the three comp | onents as defir | ned below. | | | | | $u_{B_{Turb}}$ | UBTURB | UbodyTurbulenceVelocity_fs_1 | X-velocity Turb. | FWD | | | | | | | | UbodyTurbulenceVelocity_ms_1 | Component, Body axis | | | | | | | $\mathcal{V}_{B_{Turb}}$ | VBTURB | VbodyTurbulenceVelocity_fs_1 | Y-velocity Turb. | RT | | | | | | | | VbodyTurbulenceVelocity_ms_1 | Component, Bodyaxis | | | | | | | $W_{B_{Turb}}$ | WBTURB | WbodyTurbulenceVelocity_fs_1 | Z-velocity Turb. | DWN | | | | | | | | WbodyTurbulenceVelocity_ms_1 | Component, Body axis | | | | | | | $\underline{V}_{W_{XX}}$ | VWxx | xxWindVelocity_fs_1(3) | Vector of fixed xx frame wi | nd velocities ve | elocities wi | rt the | | | | | | xxWindVelocity_ms_1(3) | specified (xx) axis system co | omprised of the | three com | ponents | | | | | | | as defined below. | | | | | | | W _N | VNW <mark>xx</mark> | XxxWindVelocity_fs_1 | North component of wind | To the | | | | | | | | XxxWindVelocity_ms_1 | velocity in xx frame |
North | | | | | | W _E | VEWxx | YxxWindVelocity fs 1 | East component Of wind | To the | | | | | | WE | VEWAA | YxxWindVelocity_is_1 | velocity in xx frame. | East | | | | | | | | The wind voicety_ins_1 | velocity in an indine. | Lust | | | | | | W_{D} | VDW <mark>xx</mark> | ZxxWindVelocity_fs_1 | Down Component Of | То | | | | | | | | ZxxWindVelocity_ms_1 | Wind Velocity in xx | Downwar | | | | | | | | | frame. | d | | | | | | $W_{T_{\chi\chi}}$ | VTWxx | xxTotalwindVelocity_fs_1 | Total Wind Velocity, in xx | NSC | | | | | | | | xxTotalwindVelocity_ms_1 | frame. | | | | | | | | | netWindVel_fs_1 (3) | Vector of the net wind veloci | cities impinging | g on the air | craft. | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |--------|------------|--------------------------|-------------------------------|-------------------|--------------|-----------|-----------|------|---------| | _ | 3-3-3-3-3 | | | Convention | Value | Value | | | Changed | | | | netWindVel_ms_1 (3) | Comprised of the three comp | ponents as defi | ned below. | | | | | | | VTWN | netWindVelFromNorth_fs_1 | Net wind velocity from | From the | | | | | | | | | netWindVelFromNorth_ms_1 | North. | North | | | | | | | | | | Net wind is the steady | | | | | | | | | | | state winds plus any | | | | | | | | | | | turbulences and shears. | | | | | | | | | VTWE | netWindVelFromEast_fs_1 | Net wind velocity from | From the | | | | | | | | | netWindVelFromEast_ms_1 | East. | East | | | | | | | | | | Net wind is the steady | | | | | | | | | | | state winds plus any | | | | | | | | | | | turbulences and shears. | | | | | | | | | VTWD | netWindVelFromBelow_fs_1 | Net wind velocity from | From | | | | | | | | | netWindVelFromBelow_ms_1 | below. | below | | | | | | | | | | Net wind is the steady | | | | | | | | | | | state winds plus any | | | | | | | | | | | turbulences and shears. | | | | | | | | | | turbulence_fs_1 (3) | Vector of the wind turbulen | ice velocities ir | npinging o | n the | | | | | | | turbulence_ms_1 (3) | aircraft. Comprised of the tl | hree componen | ts as define | ed below. | | | | | | VNTURB | turbulenceFromNorth_fs_1 | North component of | From the | | | | | | | | | turbulenceFromNorth_ms_1 | turbulence | North | | | | | | | | VETURB | turbulenceFromEast_fs_1 | East component of | From the | | | | | | | | | turbulenceFromEast_ms_1 | turbulence | East | | | | | | | | VDTURB | turbulenceFromBelow_fs_1 | Vertical component of | From | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |--------|------------|--------------------------------|----------------------------|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | turbulenceFromBelow_ms_1 | turbulence | below | | | | | | | | | bodyAngularTurbulence_ds_1 (3) | Vector of angular | | | | | | | | | | bodyAngularTurbulence_rs_1 (3) | turbulence velocities | | | | | | | | | | | comprised of the three | | | | | | | | | | | components as defined | | | | | | | | | | | below. Body frame. | | | | | | | | | PTURB | rollBodyTurbulenceRate_ds_1 | Body axis roll turbulence | The | | | | | | | | | rollBodyTurbulenceRate_rs_1 | | turbulence | | | | | | | | | | | would | | | | | | | | | | | move the | | | | | | | | | | | aircraft | | | | | | | | | | | right wing | | | | | | | | | | | down | | | | | | | | QTURB | pitchBodyTurbulenceRate_ds_1 | Body axis pitch turbulence | The | | | | | | | | | pitchBodyTurbulenceRate_rs_1 | | turbulence | | | | | | | | | | | would | | | | | | | | | | | move the | | | | | | | | | | | aircraft | | | | | | | | | | | nose up | | | | | | | | RTURB | yawBodyTurbulenceRate_ds_1 | Body axis yaw turbulence | The | | | | | | | | | yawBodyTurbulenceRate_rs_1 | | turbulence | | | | | | | | | | | would | | | | | | | | | | | move the | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |-----------------|------------|----------------------------------|---|-------------------|--------------|------------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | | | aircraft | | | | | | | | | | | nose right | | | | | | | | | Vehicle Physical | | | | | | | | | | | Characteristics | | | | | | | | | I | | bodyMomentOfInertia_slugf2 (3,3) | Matrix of the total moments | of inertia of th | e aircraft. | This is | | | | | | | bodyMomentOfInertia_kgm2 (3,3) | wrt the CG and includes eve | erything in or a | ttached to t | he | | | | | | | | aircraft (stores, passengers, | crew, fuel, etc.) |). It is con | nprised of | | | | | | | | the components below. | I _{XX} -I _{XY} -I _{ZX} | | | | | | | | | | | -I _{XY} I _{YY} -I _{YZ} | | | | | | | | | | | -I _{ZX} -I _{YZ} I _{ZZ} | | | T | | | | | I _{xx} | XIXX | bodyXXMomentOfInertia_slugf2 | Vehicle Roll Moment Of | NSC | | | | | | | | | bodyXXMomentOfInertia_kgm2 | Inertia about Cg, | | | | | | | | | | | body frame | | | | | | | | I_{xx} | XIYY | bodyYYMomentOfInertia_slugf2 | Vehicle Pitch Moment Of | NSC | | | | | | | | | bodyYYMomentOfInertia_kgm2 | Inertia about Cg, | | | | | | | | | | | body frame | | | | | | | | I _{zz} | XIZZ | bodyZZMomentOfInertia_slugf2 | Vehicle Yaw Moment Of | NSC | | | | | | | | | bodyZZMomentOfInertia_kgm2 | Inertia about Cg, | | | | | | | | | | | body frame | | | | | | | | I _{xz} | XIZX | bodyZXProductOfInertia_slugf2 | Vehicle ZX Cross Product | NSC | | | | | | | | | bodyZXProductOfInertia_kgm2 | Of Inertia about Cg, body | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |-----------------|------------|-------------------------------|--|--------------------|-----------------|--------------|-----------|------|-----------------| | | | | frame | | | | | | | | I _{xy} | XIXY | bodyXYProductOfInertia_slugf2 | Vehicle XYy Cross | NSC | | | | | | | | | bodyXYProductOfInertia_kgm2 | Product Of Inertia about | | | | | | | | | | | Cg, body frame | | | | | | | | I _{yz} | XIYZ | bodyYZProductOfInertia_slugf2 | Vehicle YZ Cross Product | NSC | | | | | | | | | bodyZProductOfInertia_kgm2 | Of Inertia about Cg, body | | | | | | | | | | | frame | | | | | | | | | | BodyCGPosition_f(3) | Vector of the CG position o | f the aircraft in | the body a | xis | | | | | | ı | BodyCGPosition_m (3) | system. Comprised of the th | nree componen | ts as define | ed below. | | | | | | XCGREF | XBodyCGPosition_f | C.g. Position W/r/t L.e. Of | CG AFT | | | | | | | | | XBodyCGPosition_m | the mean aerodynamic | of | | | | | | | | | | chord | LEMAC | | | | | | | | YCGREF | YBodyCGPosition_f | C.g. Position W/r/t the | CG Right | | | | | | | | | YBodyCGPosition_m | centerline of the aircraft | of the a/c | | | | | | | | | | | centerline | | | | | | | | ZCGREF | ZBodyCGPosition_f | C.g. Position W/r/t the | CG below | | | | | | | | | ZBodyCGPosition_m | waterline reference of the | the a/c | | | | | | | | | | aircraft (usually WL 0, see | waterline | | | | | | | | | | ZBodyWaterline_) | reference | | | | | | | | | BodyAeroMomentArm_ft | Vector of the distance from the Moment Reference center to | | | | | | | | | | BodyAeroMomentArm _m | the CG position of the aircraft in the body axis system. | | | | | | | | | | | Comprised of the three com | ponents as defi | ned below | | | | | | ΔX_{cg} | DXCG | XBodyAeroMomentArm_ft | Cg Displacement From the | FWD | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |-----------------|------------|------------------------|--------------------------------|----------------|-------------|-----------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | XBodyAeroMomentArm _m | aerodynamic force and | | | | | | | | | | | moment reference center, | | | | | | | | | | | + is CG fwd of the | | | | | | | | | | | Moment Reference Center | | | | | | | | | | | (MRC). The MRC is the | | | | | | | | | | | reference point that the | | | | | | | | | | | aero model forces and | | | | | | | | | | | moments act upon the | | | | | | | | | | | aircraft. | | | | | | | | ΔY_{cg} | DYCG | YBodyAeroMomentArm_ft | Cg Displacement From the | RT | | | | | | | | | YBodyAeroMomentArm _m | aerodynamic force and | | | | | | | | | | | moment reference center, | | | | | | | | | | | + is CG to the right of the | | | | | | | | | | | ARC | | | | | | | | ΔZ_{cg} | DZCG | ZBodyAeroMomentArm _ft | Cg Displacement From the | DWN | | | | | | | | | ZBodyAeroMomentArm _m | aerodynamic force and | | | | | | | | | | | moment reference center, | | | | | | | | | | | + is CG below the the | | | | | | | | | | | ARC | | | | | | | | | | BodyMRCPosition_f(3) | Vector of the location of the | moment refere | ence center | (MRC) | | | | | | | BodyMRCPosition_m (3) | of the aircraft in the body ax | is system. Con | nprised of | the three | | | | | | | | components as defined below | W. | | | | | | | | XMRC | XBodyMRCPosition_f | X MRC Position W/r/t | MRC | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |--------|------------|--------------------------|-----------------------------|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | XBodyMRCPosition_m | L.e. Of the mean | AFT of | | | | | | | | | | aerodynamic chord | LEMAC | | | | | | | | YMRC | YBodyMRCPosition_f | Y MRC Position W/r/t the | MRC | | | | | | | | | YBodyMRCPosition_m | centerline of the aircraft | Right of | | | | | | | | | | | the a/c | | | | | | | | | | | centerline | | | | | |
ZMRC	ZBodyMRCPosition_f	Z MRC Position W/r/t the	MRC									ZBodyMRCPosition_m	waterline reference of the	below the										aircraft (usually WL 0, see	a/c										ZBodyWaterlinePosition_	waterline)	reference								ZWL	ZBodyWaterlinePosition_f	The waterline (vertical)	NSC									ZBodyWaterlinePosition_m	reference position on the											a/c body. This is a											constant used to locate the											vertical cg and MRC											postion to the aircraft.											Waterline reference											position is normally 0 but											does not have to be.								M	XMASS	totalMass_slug	Total Mass Of Vehicle	NSC									totalMass_kg	(including Fuel, crew,								Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		------------------	------------	--------------------------------	--	--------------------	-----------------	--------------	-----------	------	-----------------					cargo, stores, passengers,											etc.)								W	WEIGHT	grossWeight_lbf	Aircraft Gross Weight	NSC									grossWeight_N	(mass*gravity), including											all fuel, occupants, stores,											etc.								A	AREA	referenceWingArea_f2	Reference Wing Area	NSC									referenceWingArea_m2									b	SPAN	referenceWingSpan_f	Reference Wing Span	NSC									referenceWingSpan_m									c	CHORD	referenceWingChord_f	Mean Aerodynamic Chord	NSC									referenceWingChord_m	(reference wing chord)										engineMomentOfInertia_slugf2	Matrix of the moments of in	ertia of the Ro	tating engi	ne, for an							engineMomentOfInertia_kgm2	engine with the propeller, in	cludes the prop	beller and o	drivetrain.								This is wrt the rotational axi	s of the engine	. For mult	i-engine								vehicles is for one engine. I	t is comprised	of the com	ponents								below.																						I _{EXX} -I _{EXY} -I _{EZX}											-I _{EXY} I _{EYY} -I _{EYZ}											-I _{EZX} -I _{EYZ} I _{EZZ}								I _{Exx}	IEXX	engineXXMomentOfInertia_slugf2	Moment of inertia about										engineXXMomentOfInertia_kgm2	the X-axis Of Rotating								Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note	Date		------------------	------------	---------------------------------	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed					Eng, for an engine with											the propeller, includes the											propeller											This is wrt the rotational											axis of the engine								I_{EYY}	IEYY	engineYYMomentOfInertia_slugf2	Moment of inertia about										engineYYMomentOfInertia_kgm2	the Y-axis Of Rotating											Eng, for an engine with											the propeller, includes the											propeller											This is wrt the rotational											axis of the engine								I _{EZZ}	IEZZ	engineZZMomentOfInertia_slugf2	Moment of inertia about										engineZZMomentOfInertia_kgm2	the Z-axis Of Rotating											Eng, for an engine with											the propeller, includes the											propeller											This is wrt the rotational											axis of the engine								I _{EXZ}	IEXZ	engineXZProductOfInertia_slugf2	Product of inertia about										engineXZProductOfInertia_kgm2	the XZ-axis Of Rotating											Eng, for an engine with											the propeller, includes the								Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note			------------------	------------	---------------------------------------	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed					propeller											This is wrt the rotational											axis of the engine								I_{EXY}	IEXY	engineXYProductOfInertia_slugf2	Product of inertia about										engineXYProductOfInertia_kgm2	the XY-axis Of Rotating										(engine_xy_product_of_inertia_slugf2)	Eng, for an engine with											the propeller, includes the											propeller											This is wrt the rotational											axis of the engine								I _{EYZ}	IEYZ	engineYZProductOfInertia_slugf2	Product of inertia about										engineYZProductOfInertia_kgm2	the YZ-axis Of Rotating										(engine_yz_product_of_inertia_slugf2)	Eng, for an engine with											the propeller, includes the											propeller											This is wrt the rotational											axis of the engine										fuelInTank_lbm(number of fuel tanks)	Vector of fuel weight by										fuelInTank_kg(number of fuel tanks)	tank. Each aircraft tank is											normally numbered and											the vector should be											ordered according to fuel											tank number. In the								Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note	Date		--------	------------	--	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed					absence of tank numbering											the convention of port to											starboard, upper to lower,											then front to rear should											be used.										fuelTankCentroid_f(number of fuel tanks,3)	Matrix used to locate the	Tank									fuelTankCentroid_m(number of fuel tanks,3)	centoids of the fuel tanks.	centroid										Each aircraft tank is	behind,										normally numbered and	right, and										the matrix should be	below the										ordered according to fuel	moment										tank number. The second	reference										component is the x, y and	center.										z moment arms from the											moment reference center											to the tank centroid in the											body axis. In the absence											of tank numbering the											convention of port to											starboard, upper to lower,											then front to rear should											be used.										Vehicle Control Positions									Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note	Date		--------	------------	---	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed				pilotLongControlPos_d	Longitundal control	AFT									pilotLongControlPos_r	position of the pilot.										pilotLatControlPos_d	Lateral control position of	RT									pilotLongControlPos_r	the pilot.										pilotPedalControlPos_d	Net Directional control	Pedal in									pilotPedalControlPos_r	position of the pilot.	or										Nornally, Right pedal -	clockwise										left pedal.	twist of a											sidestick.									pilotRightPedalControlPos_d	Right Directional control	Pedal in.									pilotRightPedalControlPos_r	position of the pilot.										pilotLeftPedalControlPos_d	Left Directional control	Pedal in.									pilotLeftPedalControlPos_r	position of the pilot.										pilotCollectiveControlPos_d	Pilot collective control	UP									pilotCollectiveControlPos_r	position.										pilotAvgThrottleControlPos_d	Average pilot throttle	FWD									pilotAvgThrottleControlPos_r	control position.										pilotThrottleControlPos_d (number of engines)	Individual pilot throttle	FWD									pilotThrottleControlPos_r (number of engines)	control positions. Order is											outboard port (left) to											outboard starboard.										copilotLongControlPos_d	Longitundal control	AFT									copilotLongControlPos_r	position of the copilot.								Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note	Date		--------	------------	---	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed				copilotLatControlPos_d	Lateral control position of	RT									copilotLongControlPos_r	the copilot.										copilotPedalControlPos_d	Net Directional control	Pedal in									copilotPedalControlPos_r	position of the copilot.	or										Nornally, Right pedal –	clockwise							
	left pedal.	twist of a											sidestick.									copilotRightPedalControlPos_d	Right Directional control	Pedal in.									copilotRightPedalControlPos_r	position of the copilot.										copilotLeftPedalControlPos_d	Left Directional control	Pedal in.									copilotLeftPedalControlPos_r	position of the copilot.										copilotCollectiveControlPos_d	Copilot collective control	UP									copilotCollectiveControlPos_r	position.										copilotAvgThrottleControlPos_d	Average copilot throttle	FWD									copilotAvgThrottleControlPos_r	control position.										copilotThrottleControlPos_d (number of engines)	Individual copilot throttle	FWD									copilotThrottleControlPos_r (number of engines)	control positions. Order is											outboard port (left) to											outboard starboard.										avgThrottleControlPos_d	Average pilot and copilot	FWD									avgThrottleControlPos_r	throttle control position.										throttleControlPos_d (number of engines)	Individual throttle control	FWD									throttleControlPos_r (number of engines)	position (pilot and copilot								Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		--------	------------	--	---	--------------------	-----------------	--------------	-----------	------	-----------------					average). Order is	Convention	value	value			Changeu					outboard port (left) to outboard starboard.										avgPropControlPos_d	Average pilot and copilot	FWD									avgPropControlPos_r	propeller blade pitch control position.										propControlPos_d (number of engines)	Individual propeller blade	FWD									propControlPos_r (number of engines)	pitch control position. Order is outboard port											(left) to outboard											starboard.										trailingEdgeFlapDeflection (number of leading edge	Vector of trailing edge	LED									flap control surfaces)	flap positions, one for											each surface deflected.											Order is outboard port											(left) to outboard											starboard.										avgTrailingEdgeFlapDeflection_d	Trailing edge flap	TED										deflection. Average for all											trailing edge flap surfaces.										differentialTrailingEdgeFlapDeflection_d	Measure of roll control	RWD										due to trailing edge flap	control										deflection differences in								Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		--------	------------	--	-----------------------------	--------------------	-----------------	--------------	-----------	------	-----------------					vehicles with multiple											control surfaces, usually (left deflections-right											deflections)										leadingEdgeFlapDeflection (number of leading edge	Vector of leading edge flap	LED									flap control surfaces)	positions, one for each											surface deflected. Order is											outboard port (left) to											outboard starboard.										avgLeadingEdgeFlapDeflection_d	Leading edge flap/slat	LED										deflection. Average for all											deflected leading edge											flap/slat surfaces.										differentialLeadingEdgeFlapDeflection_d	Measure of roll control	RWD										due to leading edge flap	control										deflection differences in											vehicles with multiple											control surfaces, usually (left deflections-right											deflections)										spoilerDeflection (number of spoiler control surfaces)	Vector of spoiler control	TEU										positions, one for each											surface deflected. Order is								Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Date Changed		--------	------------	--	-----------------------------	--------------------	-----------------	--------------	-----------	-----------------					outboard port (left) to										outboard starboard.									avgSpoilerDeflection_d	Spoiler deflection.	TEU									Average for all deflected										spoilers									differentialSpoilerDeflection_d	Measure of roll control	RWD									due to spoiler deflection	control									differences in vehicles										with multiple control										surfaces, usually (right										deflections-left										deflections)									aileronDeflection (number of aileron control surfaces)	Vector of aileron control	TEU									positions, one for each										surface deflected. Order is										outboard port (left) to										outboard starboard.				I					avgAileronDeflection	Differential aileron	Right									deflection, right-left	aileron										TEU								rudderDeflection_d (number of rudder control surfaces)	Vector of rudder control	TEL									positions, one for each										surface deflected. Order is							Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial	Min Value	Max Value	Note	Date		--------	------------	---	-----------------------------	--------------------	--------	--------------	-----------	------	---------					outboard port (left) to	Convention	Value	value			Changed					outboard starboard.										avgRudderDeflection_d	Average rudder deflection	TEL											IEL									differentialRudderDeflection_d	Measure of yaw control											due to rudder deflection											differences in vehicles											with multiple control											surfaces, usually (right											deflections-left											deflections)										rudderTabDeflection_d (number of rudder tab control	Vector of rudder tab	TEL									surfaces)	control positions, one for											each surface deflected.											Order is outboard port											(left) to outboard											starboard.										avgRudderTabDeflection_d	Average rudder tab	TEL										deflection										differentialRudderTabDeflection_d	Measure of yaw control											due to rudder tab											tdeflection differences in											vehicles with multiple											control surfaces, usually (Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		--------	------------	---	---	--------------------	-----------------	--------------	-----------	------	-----------------					right deflections-left deflections)	Convention	value	value			Changeu				elevatorDeflection_d (number of elevator control surfaces)	Vector of elevator (or stabilizer/stabilator) control positions, one for each surface deflected. Order is outboard port (left) to outboard	TEU									avgElevatorDeflection_d	Average elevator (or stabilizer/stabilator) deflection	TEU									differentialElevatorDeflection_d	Measure of roll control due to elevator (or stabilizer/stabilator) deflection differences in vehicles with multiple control surfaces, usually (right deflections-left deflections)	Right control TEU									elevatorTabDeflection_d (number of elevator tab control surfaces)	Vector of elevator (or stabilizer/stabilator) tab control positions, one for	TEU				_			Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note	Date		--------	------------	--	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed					each surface deflected.											Order is outboard port											(left) to outboard											starboard.				ı						avgElevatorTabDeflection_d	Average elevator (or	TEU										stabilizer/stabilator) tab											deflection										differentialElevatorTabDeflection_d	Measure of roll control	Right										due to elevator (or	control										stabilizer/stabilator) tab	TEU										deflection differences in											vehicles with multiple											control surfaces, usually (
									right deflections-left											deflections)										canardDeflection_d (number of canard control surfaces)	Vector of canard control	TED										positions, one for each											surface. Order is outboard											port (left) to outboard											starboard.										avgCanardDeflection_d	Average canard deflection	TED									differentialCanardDeflection_d	Measure of roll control	Right										due to canard deflection	control							Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note	Date		--------	------------	---	-----------------------------	------------	--------	-------	-----------	------	---------						Convention	Value	Value			Changed					differences in vehicles	TED										with multiple control											surfaces, usually (right											deflections-left											deflections)										canardTabDeflection_d (number of canard tab control	Vector of canard tab	TED									surfaces)	control positions, one for											each surface. Order is											outboard port (left) to											outboard starboard.				ı						avgCanardTabDeflection_d	Average canard tab	TED										deflection										differentialCanardTabDeflection_d	Measure of roll control	Right										due to canard tab	control										deflection differences in	TED										vehicles with multiple											control surfaces, usually (right deflections-left											deflections)										speedbrakeDeflection_d	Speedbrake deflection	Extended									landingGearPosition (number of landing gear struts)	Vector of landing gear	0= up and										positions, one for each	locked										strut. Order is outboard	1= full							Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		----------------	------------	---	-----------------------------	--------------------	-----------------	--------------	-----------	------	-----------------					port (left) to outboard	extension										starboard.	with no											weight on											wheels									landingGearWeightOnWheels_lbf (number of landing	Vector of landing gear										gear struts)	weight on wheels, one for										landingGearWeightOnWheels_kg (number of landing	each strut. Order is										gear struts)	outboard port (left) to											outboard starboard.										landingGearWheelSpeed_rs_1 (number of landing gear	Array of landing gear										struts, number of trucks, number of wheels per truck)	wheel speeds by strut, one											for each strut. Order of											struts is outboard port											(left) strut, to outboard											starboard. Order of trucks											is front to rear. Order of											wheels on each truck is											port to starboard.										Vehicle Aerodynamic											Characteristics									C_{L}	CL	totalCoefficientOfLift	Coefficient Of Lift, Total,	UP				3						includes effects of stores								C _D	CD	totalCoefficientOfDrag	Coefficient Of Drag,	AFT				3			Symbol	Short Name	Full Variable Name	Description	Sign	Intial	Min	Max Value	Note			-----------------	------------	-----------------------------	------------------------------	-----------------	---------------	----------	-----------	------	---------						Convention	Value	Value			Changed					Total, includes effects of											stores										aeroBodyForceCoefficient(3)	Vector of total aerodynamic	force coefficie	ents in the b	ody axis						I		system, comprised of the thr	ree components	as defined	below.					C_X	CX	aeroXBodyForceCoefficient	X-body Force Coefficient	FWD				3						due to aerodynamic loads,											includes stores (Body											axis)								C_{Y}	CY	aeroYBodyForceCoefficient	Y-body Force Coefficient	RT				3						due to aerodynamic loads,											includes stores (Body											axis)								C_z	CZ	aeroZBodyForceCoefficient	Z-body Force Coefficient	DOWN				3						due to aerodynamic loads,											includes stores (Body											axis)										aeroBodyForce_lbf(3)	Vector of total aerodynamic	forces in the b	ody axis sy	rstem							aeroBodyForce_N (3)	including stores. Comprised										actobodyrotec_tv(3)		of the three co	imponents	as					_			defined below.								F _{AX}	FAX	aeroXBodyForce_lbf	Total X-body Force due to	FWD				3					aeroXBodyForce_N	aerodynamic loads,											includes stores (Body											axis)								Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		-----------------	------------	-------------------------	--------------------------------	--------------------	-----------------	--------------	-----------	------	-----------------		F _{AY}	FAY	aeroYBodyForce_lbf	Total Y-body Force due to	RT	varue	Value		3	Changeu				aeroYBodyForce N	aerodynamic loads,											includes stores (Body											axis)								F _{AZ}	FAZ	aeroZBodyForce_lbf	Total Z-body Force due to	DOWN				3					aeroZBodyForce_N	aerodynamic loads,											includes stores (Body											axis)										thrustBodyForce_lbf (3)	Vector of total net propulsion	on system force	s in the boo	dy axis							thrustBodyForce_N (3)	system (includes installion l	osses, inlet effi	cieny and j	propeller								efficiency). Comprised of the	he three compo	nents as de	efined								below.								F_{EX}	FEX	thrustXBodyForce_lbf	Total net engine thrust	FWD				3					thrustXBodyForce_N	Force, X-body axis								F_{EY}	FEY	thrustYBodyForce_lbf	Total net engine thrust	RT				3					thrustYBodyForce_N	Force, Y-body axis								F_{EZ}	FEZ	thrustZBodyForce_lbf	Total net engine thrust	DOWN				3					thrustZBodyForce_N	Force, Z-body axis										gearBodyForce_lbf (3)	Vector of total landing gear	ground reactio	n forces in	the body							gearBodyForce_N (3)	axis system. Does NOT inc	lude aerodynar	mic forces o	on the								landing gear which are inclu	ıded in aeroB	odyForce	e defined								above. Comprised of the th	ree component	ts as define	d below.					F_{GX}	FGX	gearXBodyForce_lbf	Total landing gear ground	FWD				3			Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		-------------------	------------	-------------------------------	-------------------------------	--------------------	-----------------	--------------	-----------	------	-----------------				gearXBodyForce_N	reaction force, X-body											axis								F_{GY}	FGY	gearYBodyForce_lbf	Total landing gear ground	RT				3					gearYBodyForce_N	reaction force, Y-body											axis								F _{GZ}	FGZ	gearZBodyForce_lbf	Total landing gear ground	DOWN				3					gearZBodyForce_N	reaction force, Z-body											axis										totalBodyForce_lbf (3)	Vector of total forces in the	body axis syste	em. Includ	es all							totalBodyForce_N (3)	forces exerted upon the airc	raft. Comprise	ed of the th	ree								components as defined belo	w.							F _{xTOT}	FX	totalXBodyForce_lbf	Total Forces On A/c, X-	FWD				3					totalXBodyForce_N	body axis								F _{yTOT}	FY	totalYBodyForce_lbf	Total Forces On A/c, Y-	RT				3					totalYBodyForce_N	body axis								F _{zTOT}	FZ	totalZBodyForce_lbf	Total Forces On A/c, Z-	DOWN				3					totalZBodyForce_N	body axis										aeroBodyMomentCoefficient (3)	Vector of total aerodynamic	moment coeffi	icients in tl	ne body								axis system, including store	s. Comprised o	f the three									components as defined belo	w.							C ₁	CLL	aeroRollBodyMomentCoefficient	Total Aerodynamic	RWD				3						Rolling Moment											Coefficient including								Symbol	Short Name	Full Variable Name	Description	Sign Convention	Intial Value	Min Value	Max Value	Note	Date Changed		----------------	------------	--------------------------------	-----------------------------	--------------------	-----------------	--------------	-----------	------	-----------------					stores. Moment about the											X-body axis								C _m	CLM	aeroPitchBodyMomentCoefficient	Total Aerodynamic	ANU				3																																																																																																										
Pitching Moment | | | | | | | | | | | Coefficient, including | | | | | | | | | | | stores. Moment about the | | | | | | | | | | | Y-body axis | | | | | | | | Cn | CLN | aeroYawBodyMomentCoefficient | Total Aerodynamic | ANR | | | | 3 | | | | | | yawing Moment | | | | | | | | | | | Coefficient, including | | | | | | | | | | | stores. Moment about the | | | | | | | | | | | Z-body axis | | | | | | | | | | aeroBodyMoment_flbf (3) | Vector of total aerodynamic | moments in th | e body axis | s system, | | | | | | | aeroBodyMoment_Nm (3) | including stores Reference | ed to the mome | ent reference | ce center. | | | | | | l | | Comprised of the three com | ponents as defi | ned below. | | | | | | L _A | TAL | aeroRollBodyMoment_flbf | Total Aerodynamic | RWD | | | | | | | | | aeroRollBodyMoment_Nm | Rolling moment | | | | | | | | | | | (including attached | | | | | | | | | | | stores), about the X-body | | | | | | | | | | | axis | | | | | | | | M _A | TAM | aeroPitchBodyMoment_flbf | Total Aerodynamic | ANU | | | | | | | | | aeroPitchBodyMoment_Nm | pitching moment | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign
Convention | Intial
Value | Min
Value | Max Value | Note | Date
Changed | |----------------|------------|---|--|--------------------|------------------------|--------------------|-----------|------|-----------------| | | | | (including attached
stores), about the Y-body
axis | | | | | | | | N _A | TAN | aeroYawBodyMoment_flbf aeroYawBodyMoment_Nm | Total Aerodynamic yawing moment (including attached stores), about the Z-body axis | ANR | | | | | | | | | thrustBodyMoment_flbf (3) thrustBodyMoment_Nm (3) | Vector of total net propulsion system (includes installion le efficiency). Referenced to Comprised of the three three compri | osses, inlet effi | cieny and peference ce | oropeller
nter. | | | | | L _E | TEL | thrustRollBodyMoment_flbf thrustRollBodyMoment_Nm | Total Engine Rolling Moment, about the X-body axis | RWD | | | | | | | M _E | TEM | thrustPitchBodyMoment_flbf thrustPitchBodyMoment_Nm (thrust_body_pitch_moment_flbf) | Total Engine pitching Moment, about the Y- body axis | ANU | | | | | | | N _E | TEN | thrustYawBodyMoment_flbf
thrustYawBodyMoment_Nm | Total Engine yawing Moment, about the X-body axis | ANR | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | | | |------------------|------------|---|--|------------|--------|-------|-----------|------|---------|--| | | | | | Convention | Value | Value | | | Changed | | | | | landingGearBodyMoment_flbf (3) landingGearBodyMoment_Nm (3) | Vector of total landing gear ground reaction moments in the body axis system. Referenced to the moment reference | | | | | | | | | | | | center. Does NOT include aerodynamic moments on the | | | | | | | | | | | | landing gear which are included in aeroBodyMoment | | | | | | | | | | | | defined above. Comprised of the three components as defined | | | | | | | | | | l | | below. | | | | | | | | | L_{G} | TGL | landingGearRollBodyMoment_flbf | Total Landing Gear | RWD | | | | | | | | | | landingGearRollBodyMoment_Nm | Rolling Moment, about | | | | | | | | | | | | the X-body axis | | | | | | | | | M_{G} | TGM | landingGearPitchBodyMoment_flbf | Total Landing gear Pitch | ANU | | | | | | | | | | landingGearPitchBodyMoment_Nm | Moment, about the Y- | | | | | | | | | | | | body axis | | | | | | | | | N_G | TGN | landingGearYawBodyMoment_flbf | Total Landing Gear | ANR | | | | | | | | | | landingGearYawBodyMoment_Nm | Yawing Moment, about | | | | | | | | | | | | the Z-body axis | | | | | | | | | | | totalBodyMoment_flbf (3) | Vector of total moments in the body axis system. Referenced | | | | | | | | | | | totalBodyMoment_Nm (3) | to the moment reference center. Includes all moments exerted | | | | | | | | | | | | upon the aircraft. Comprised of the three components as | | | | | | | | | | | | defined below. | | | | | | | | | L _{TOT} | TTL | totalRollBodyMoment_flbf | Total Rolling Moment, | RWD | | | | | | | | | | totalRollBodyMoment_Nm | about the X-body axis | | | | | | | | | M _{TOT} | TTM | totalPitchBodyMoment_flbf | Total Pitching Moment, | ANU | | | | | | | | Symbol | Short Name | Full Variable Name | Description | Sign | Intial | Min | Max Value | Note | Date | |------------------|------------|--|----------------------------|------------|--------|-------|-----------|------|---------| | | | | | Convention | Value | Value | | | Changed | | | | totalPitchBodyMoment_Nm | about the Y-body axis | | | | | | | | N _{TOT} | TTN | totalYawBodyMoment_flbf | Total Yawing Moment, | ANR | | | | | | | | | totalYawBodyMoment_Nms | about the Z-body axis | | | | | | | | | | Simulation Control | | | | | | | | | | | Parameters | | | | | | | | | | TIME | simTime_s | Time Since Start Of | NSC | | | | | | | | | simTime_s | Operate Mode | | | | | | | | | | (sim_time_s) | | | | | | | | | | | deltaTime_s (number of different integration step sizes) | Vector of Integration step | | | | | | | | | | | sizes | | | | | | | References: