Statistical measures of variation of certain parameters and functions can be embedded in
a DAVE-ML model. This information is captured in a uncertainty
element, which can be referenced
by variableDef
,
griddedTableDef
and
ungriddedTableDef
elements.
Uncertainty in the value of a parameter or function is given in one of two ways, depending
on the appropriate probability distribution function (PDF): as a Gaussian
or normal distribution (bell curve) or as a uniform (evenly spread) distribution. One of
these distributions is selected by including either a
normalPDF
or a
uniformPDF
element within the
uncertainty
element.
Linear correlation between the randomness of two or more variables or functions can be
specified. Although the correlation between parameters do not have a dependency direction
(that is, the statistical uncertainty of either parameter is specified in terms of the other
one so the calculation order doesn't matter) correlation is customarily specified as a
dependency of one random variable on the value of another random variable. correlatesWith
identifies variables or
functions whose uncertainty 'depends' on the current value of this variable or parameter;
the correlation
sub-element specifies
the correlation coefficient and identifies the (previously calculated) random variable or
function on which the correlation depends.
These correlation sub-elements only apply to normal (Gaussian) probability distribution functions.
Each of these distribution description elements contain additional information, as described below.
uncertainty : effect=['additive'|'multiplicative'|'percentage'|'absolute'] EITHER normalPDF : numSigmas=['1', '2', '3', ...] bounds : [correlatesWith : varID] [correlation : varID, corrCoef] OR uniformPDF : symmetric=['yes'|'no'] bounds [, bounds]
uncertainty
attributes:
effect
Indicates, by choice of four enumerated values, how the uncertainty is modeled: as an additive, multiplicative, or percentage variation about the nominal value, or an specific number (absolute).
uncertainty
sub-elements:
normalPDF
If present, the uncertainty in the parameter value has a probability distribution that is Gaussian (bell-shaped). A single parameter representing the additive (± some value), percentage (± some %) of variation from the nominal value in terms of 1, 2, 3, or more standard deviations (sigmas or σs) is specified. Note here multiplicative and absolute bounds don't make much sense.
uniformPDF
If present, the uncertainty in the parameter or function value has a uniform
likelihood of taking on any value between symmetric or asymmetric boundaries, which
are specified in terms of additive (either ±x or +x/-y), multiplicative, percentage,
or absolute variations. If absolute, the specified range of values must bracket the nominal
value. For this element, the bounds
sub-element may contain one or two values in which case the boundaries are symmetric
or asymmetric.
Example 16. A variable with absolute uncertainty bounds
This example shows how to specify that a constant parameter that can take on a specified range of values with uniform probability distribution. The nominal value of the minimum drag coefficient is specified to be 0.005, but when performing parametric variations, it is allowed to take on values between 0.001 and 0.01.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="CD zero" varID="CDo" units="ND" initialValue="0.005"> <description> Minimum coefficient of drag with symmetric uniform uncertainty band </description> <isOutput/> <uncertainty effect="absolute"> <uniformPDF symmetric="yes"> <bounds>0.001</bounds> <bounds>0.010</bounds> </uniformPDF> </uncertainty> </variableDef> </DAVEfunc>
Example 17. 10% uncertainty applied to output variable with uniform distribution
This example shows how to specify that a variable has a 10% uniformly distributed uncertainty band. In this example, the output variable comes from a non-linear one-dimensional function, but the uncertainty is applied downstream of the table.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="Alpha_deg" varID="Alpha_deg" units="d"/> <variableDef name="Cm_u" varID="Cm_u" units="ND"> <description> Coefficient of pitching moment with 10 percent symmetric uniform uncertainty band </description> <isOutput/> <uncertainty effect="percentage"> <uniformPDF symmetric="yes"> <bounds>10.0</bounds> </uniformPDF> </uncertainty> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Nominal Cm"> <description> Nominal pitching moment values prior to application of uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
Example 18. Asymmetric additive uncertainty applied to output variable with uniform distribution
This example shows how to specify that a variable has an asymmetric, uniformly distributed, additive uncertainty band. In this example, the output variable comes from a non-linear one-dimensional function, but the uncertainty is applied downstream of the table.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="Alpha_deg" varID="Alpha_deg" units="d"/> <variableDef name="Cm_u" varID="Cm_u" units="ND"> <description> Coefficient of pitching moment with an asymmetric uniform uncertainty band </description> <isOutput/> <uncertainty effect="additive"> <uniformPDF symmetric="yes"> <bounds>0.50</bounds> <bounds>0.00</bounds> </uniformPDF> </uncertainty> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Nominal Cm"> <description> Nominal pitching moment values prior to application of uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
Example 19. A one dimensional table, point-by-point, Gaussian
In this example, a Gaussian (normal) distribution function is applied to each point in a one-dimensional function table, with the 3σ value expressed as a multiplier of the nominal value.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="Alpha_deg" varID="Alpha_deg" units="d"/> <variableDef name="Cm_u" varID="Cm_u" units="ND"> <description> Coefficient of pitching moment with 10 percent symmetric uniform uncertainty band </description> <isOutput/> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Uncertain Cm"> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <uncertainty effect="multiplicative"> <normalPDF numSigmas="3"> <bounds> <dataTable> 0.10, 0.08, 0.06, 0.05, 0.05, 0.06, 0.07, 0.12 </dataTable> </bounds> </normalPDF> </uncertainty> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
Example 20. Two nonlinear functions with correlated uncertainty
In this example, uncertainty in pitching-moment coefficient varies in direct correlation with lift coefficient uncertainty.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="Alpha_deg" varID="Alpha_deg" units="d"/> <variableDef name="CL_u" varID="CL_u" units="ND"> <description> Coefficient of lift with a symmetric Gaussian uncertainty of 20%; correlates with Cm uncertainty. </description> <uncertainty effect="multiplicative"> <normalPDF numSigmas="3"> <bounds>0.20</bounds> <correlatesWith varID="Cm_u"/> </normalPDF> </uncertainty> </variableDef> <variableDef name="Cm_u" varID="Cm_u" units="ND"> <description> Coefficient of pitching moment with a symmetric Gaussian uncertainty distribution of 30%; correlates directly with lift uncertainty. </description> <isOutput/> <uncertainty effect="percentage"> <normalPDF numSigmas="3"> <bounds>30</bounds> <correlation varID="CL_u" corrCoef="1.0"/> </normalPDF> </uncertainty> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Nominal CL"> <description> Nominal lift coefficient values prior to application of uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="CL_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <dataTable> 0.0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.45, 0.30 </dataTable> </griddedTableDef> </functionDefn> </function> <function name="Nominal Cm"> <description> Nominal pitching moment values prior to application of uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>