Statistical measures of variation of certain parameters and functions can be embedded in a
DAVE-ML model in several ways. This information is captured in an uncertainty
element, which can be
referenced by variableDef
,
griddedTableDef
and ungriddedTableDef
elements. For
maximum modeling flexibility, it is possible to add uncertainty to the independent value
arguments to a function or calculation, to the output of a function itself, as well as to
any output signal. Applying uncertainty at more than one location in a calculation change
is probably not a good practice, however.
Details on providing the random values for uncertainties is left to the implementer.
Uncertainty in the value of a parameter or function is given in one of two ways,
depending on the appropriate probability distribution function (PDF): as
a Gaussian or normal distribution (bell curve) or as a uniform (evenly spread) distribution.
One of these distributions is selected by including either a
normalPDF
or a
uniformPDF
element within the
uncertainty
element.
Linear correlation between the randomness of two or more variables or functions can be
specified. Although the correlation between parameters does not have a dependency direction
(i.e., the statistical uncertainty of one parameter is specified in terms of the other
parameter, therefore the calculation order does not matter), correlation is customarily
specified as a dependency of one random variable on the value of another random
variable. correlatesWith
identifies variables or functions whose uncertainty 'depends' on the current value of this
variable or parameter; the correlation
sub-element specifies the correlation coefficient and identifies the (previously
calculated) random variable or function on which the correlation depends.
These correlation sub-elements only apply to normal (Gaussian) probability distribution functions.
Each of these distribution description elements contain additional information, as described below.
uncertainty : effect=['additive'|'multiplicative'|'percentage'|'absolute'] EITHER normalPDF : numSigmas=['1'|'2'|'3'] bounds { scalar value representing the one, two or three sigma bound }: (correlatesWith* : varID | correlation* : varID, corrCoef ) OR uniformPDF bounds { one or two scalar values for abs. or min/max bounds }
uncertainty
attributes:
uncertainty
sub-elements:
normalPDF
If present, the uncertainty in the parameter value has a probability distribution that is Gaussian (bell-shaped). A single parameter representing the additive (± some value), percentage (± some %) of variation from the nominal value in terms of 1, 2, 3, or more standard deviations (sigmas) is specified. Note: multiplicative and absolute bounds do not make much sense.
uniformPDF
If present, the uncertainty in the parameter or function value has a uniform
likelihood of taking on any value between symmetric or asymmetric boundaries, which
are specified in terms of additive (either ±x or +x/-y), multiplicative,
percentage, or absolute variations. If absolute, the specified range of values must
bracket the nominal value. For this element, the
bounds
sub-element may contain one or two values, in which case the boundaries are
symmetric or asymmetric.
Example 16. A variable with absolute uncertainty bounds
This example shows how to specify that a constant parameter can take on a specified range of values with uniform probability distribution. The nominal value of the minimum drag coefficient is specified to be 0.005, but when performing parametric variations, it is allowed to take on values between 0.001 and 0.01.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="CD zero" varID="CDo" units="nd" initialValue="0.005"> <description> Minimum coefficient of drag with an asymmetric uniform uncertainty band </description> <isOutput/> <uncertainty effect="absolute"> <uniformPDF> <bounds>0.001</bounds> <bounds>0.010</bounds> </uniformPDF> </uncertainty> </variableDef> </DAVEfunc>
Example 17. 10% uncertainty applied to output variable with a uniform distribution
This example shows how to specify that a variable has a 10% uniformly distributed uncertainty band. In this example, the output variable comes from a nonlinear 1D function and the uncertainty is applied to the output of the table.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="angleOfAttack" varID="Alpha_deg" units="deg"> <isStdAIAA/> </variableDef> <variableDef name="Cm_u" varID="Cm_u" units="nd"> <description> Coefficient of pitching moment with 10 percent symmetric uniform uncertainty band </description> <isOutput/> <uncertainty effect="percentage"> <uniformPDF> <bounds>10.0</bounds> </uniformPDF> </uncertainty> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Nominal Cm"> <description> Nominal pitching moment values prior to application of uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
Example 18. Asymmetric additive uncertainty applied to output variable with uniform distribution
This example shows how to specify that a variable has an asymmetric, uniformly distributed, additive uncertainty band. In this example, the output variable comes from a nonlinear 1D function and the uncertainty is applied to the output of the table.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="angleOfAttack" varID="Alpha_deg" units="deg"> <isStdAIAA/> </variableDef> <variableDef name="Cm_u" varID="Cm_u" units="nd"> <description> Coefficient of pitching moment with an asymmetric uniform uncertainty band </description> <isOutput/> <uncertainty effect="additive"> <uniformPDF> <bounds>-0.50</bounds> <bounds>0.00</bounds> </uniformPDF> </uncertainty> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Nominal Cm"> <description> Nominal pitching moment values prior to application of uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
Example 19. A 1D point-by-point, Gaussian distribution function
In this example, a Gaussian (normal) distribution function is applied to each point in a 1D function table, with the 3-sigma value expressed as a multiplier of the nominal value.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="angleOfAttack" varID="Alpha_deg" units="deg"> <isStdAIAA/> </variableDef> <variableDef name="Cm_u" varID="Cm_u" units="nd"> <description> Coefficient of pitching moment with 10 percent symmetric uniform uncertainty band </description> <isOutput/> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Uncertain Cm"> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs> <bpRef bpID="ALP"/> </breakpointRefs> <uncertainty effect="multiplicative"> <normalPDF numSigmas="3"> <bounds> <dataTable> 0.10, 0.08, 0.06, 0.05, 0.05, 0.06, 0.07, 0.12 </dataTable> </bounds> </normalPDF> </uncertainty> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
Example 20. Two nonlinear functions with correlated uncertainty
In this example, uncertainty in pitching-moment coefficient varies in direct correlation with lift coefficient uncertainty.
<DAVEfunc> <fileHeader> . . . </fileHeader> <variableDef name="angleOfAttack" varID="Alpha_deg" units="deg"> <isStdAIAA/> </variableDef> <variableDef name="CL_u" varID="CL_u" units="nd"> <description> Coefficient of lift with a symmetric Gaussian uncertainty of 20%; correlates with Cm uncertainty. </description> <uncertainty effect="multiplicative"> <normalPDF numSigmas="3"> <bounds>0.20</bounds> <correlatesWith varID="Cm_u"/> </normalPDF> </uncertainty> </variableDef> <variableDef name="Cm_u" varID="Cm_u" units="nd"> <description> Coefficient of pitching moment with a symmetric Gaussian uncertainty distribution of 30%; correlates directly with lift uncertainty. </description> <isOutput/> <uncertainty effect="percentage"> <normalPDF numSigmas="3"> <bounds>30</bounds> <correlation varID="CL_u" corrCoef="1.0"/> </normalPDF> </uncertainty> </variableDef> <breakpointDef bpID="ALP"> <bpVals>0, 5, 10, 15, 20, 25, 30, 35</bpVals> </breakpointDef> <function name="Nominal CL"> <description> Nominal lift coefficient values prior to uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="CL_u"/> <functionDefn> <griddedTableDef> <breakpointRefs><bpRef bpID="ALP"/></breakpointRefs> <dataTable> 0.0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.45 </dataTable> </griddedTableDef> </functionDefn> </function> <function name="Nominal Cm"> <description> Nominal pitching moment values prior to uncertainty </description> <independentVarRef varID="Alpha_deg"/> <dependentVarRef varID="Cm_u"/> <functionDefn> <griddedTableDef> <breakpointRefs><bpRef bpID="ALP"/></breakpointRefs> <dataTable> 5.2, 4.3, 3.1, 1.8, 0.3, 0.1, 0.0, -0.1 </dataTable> </griddedTableDef> </functionDefn> </function> </DAVEfunc>
2011-03-31